Atom Tunneling in the Water Formation Reaction H2 + OH → H2O + H on an Ice Surface

نویسندگان

  • Jan Meisner
  • Thanja Lamberts
  • Johannes Kästner
چکیده

OH radicals play a key role as an intermediate in the water formation chemistry of the interstellar medium. For example the reaction of OH radicals with H2 molecules is among the final steps in the astrochemical reaction network starting from O, O2, and O3. Experimentally it was shown that even at 10 K this reaction occurs on ice surfaces. As the reaction has a high activation energy only atom tunneling can explain such experimental findings. In this study we calculated reaction rate constants for the title reaction on a water-ice Ih surface. To our knowledge, low-temperature rate constants on a surface are not available in the literature. All surface calculations were done using a QM/MM framework (BHLYP/TIP3P) after a thorough benchmark of different density functionals and basis sets to highly accurate correlation methods. Reaction rate constants are obtained using instanton theory which takes atom tunneling into account inherently, with constants down to 110 K for the Eley–Rideal mechanism and down to 60 K for the Langmuir–Hinshelwood mechanism. We found that the reaction is nearly temperature independent below 80 K. We give kinetic isotope effects for all possible deuteration patterns for both reaction mechanisms. For the implementation in astrochemical networks, we also give fit parameters to a modified Arrhenius equation. Finally, several different binding sites and binding energies of OH radicals on the Ih surface are discussed and the corresponding rate constants are compared to the gas-phase case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature, composition, and hydrogen isotope effect in the hydrogenation of CO on amorphous ice surface at 10-20 K.

An experiment on the addition reaction of a D atom (deuteration) to CO on a cold ice surface is performed by deuterium atom exposure of three types of samples (pure solid CO, CO-capped H2O ice, and CO-H2O mixed ice) at 10-20 K. The variation of IR absorption spectra for the samples was measured by a Fourier transform infrared spectrometer during exposure to deuterium atoms. Reactions on pure so...

متن کامل

Quantum tunneling during interstellar surface-catalyzed formation of water: the reaction H + H2O2 → H2O + OH† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6cp06457d Click here for additional data file.

The final step of the water formation network on interstellar grain surfaces starting from the H + O2 route is the reaction between H and H2O2. This reaction is known to have a high activation energy and therefore at low temperatures it can only proceed via tunneling. To date, however, no rate constants are available at temperatures below 200 K. In this work, we use instanton theory to compute ...

متن کامل

Molecular dynamics simulations of CO2 formation in interstellar ices.

CO2 ice is one of the most abundant components in ice-coated interstellar ices besides H2O and CO, but the most favorable path to CO2 ice is still unclear. Molecular dynamics calculations on the ultraviolet photodissociation of different kinds of CO-H2O ice systems have been performed at 10 K in order to demonstrate that the reaction between CO and an OH molecule resulting from H2O photodissoci...

متن کامل

Water formation by surface O3 hydrogenation.

Three solid state formation routes have been proposed in the past to explain the observed abundance of water in space: the hydrogenation reaction channels of atomic oxygen (O + H), molecular oxygen (O(2) + H), and ozone (O(3) + H). New data are presented here for the third scheme with a focus on the reactions O(3) + H, OH + H and OH + H(2), which were difficult to quantify in previous studies. ...

متن کامل

Reaction Dynamics of NH2+OH on an Interpolated Potential Energy Surface

QCT calculations were performed to study the behavior of energized NH2OH formed by association collision of NH2 radical with OH radical. A potential energy surface that describes the behavior of the title reaction has been constructed by interpolation of ab initio data. H2O, HON, HNO, NH3, O, H2NO, cis or trans-HONH, and H products and two vibrationally energized NH2OH and NH3O adducts were obs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017